It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Biochemical recurrence (BCR) occurs in 20%–40% of men with prostate cancer (PCa) who undergo radical prostatectomy. Predicting which patients will experience BCR in advance helps in formulating more targeted prostatectomy procedures. However, current preoperative recurrence prediction mainly relies on the use of the Gleason grading system, which omits within-grade morphological patterns and subtle histopathological features, leaving a significant amount of prognostic potential unexplored.
Methods
We collected and selected a total of 1585 prostate biopsy images with tumor regions from 317 patients (5 Whole Slide Images per patient) to develop a deep learning system for predicting BCR of PCa before prostatectomy. The Inception_v3 neural network was employed to train and test models developed from patch-level images. The multiple instance learning method was used to extract whole slide image-level features. Finally, patient-level artificial intelligence models were developed by integrating deep learning -generated pathology features with several machine learning algorithms.
Results
The BCR prediction system demonstrated great performance in the testing cohort (AUC = 0.911, 95% Confidence Interval: 0.840–0.982) and showed the potential to produce favorable clinical benefits according to Decision Curve Analyses. Increasing the number of WSIs for each patient improves the performance of the prediction system. Additionally, the study explores the correlation between deep learning -generated features and pathological findings, emphasizing the interpretative potential of artificial intelligence models in pathology.
Conclusions
Deep learning system can use biopsy samples to predict the risk of BCR in PCa, thereby formulating targeted treatment strategies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer