It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Study objectives
This study aimed to identify the risk factors associated with falls in hospitalized patients, develop a predictive risk model using machine learning algorithms, and evaluate the validity of the model’s predictions.
Study design
A cross-sectional design was employed using data from the DRYAD public database.
Research methods
The study utilized data from the Fukushima Medical University Hospital Cohort Study, obtained from the DRYAD public database. 20% of the dataset was allocated as an independent test set, while the remaining 80% was utilized for training and validation. To address data imbalance in binary variables, the Synthetic Minority Oversampling Technique combined with Edited Nearest Neighbors (SMOTE-ENN) was applied. Univariate analysis and least absolute shrinkage and selection operator (LASSO) regression were used to analyze and screen variables. Predictive models were constructed by integrating key clinical features, and eight machine learning algorithms were evaluated to identify the most effective model. Additionally, SHAP (Shapley Additive Explanations) was used to interpret the predictive models and rank the importance of risk factors.
Results
The final model included the following variables: Adl_standing, Adl_evacuation, Age_group, Planned_surgery, Wheelchair, History_of_falls, Hypnotic_drugs, Psychotropic_drugs, and Remote_caring_system. Among the evaluated models, the Random Forest algorithm demonstrated superior performance, achieving an AUC of 0.814 (95% CI: 0.802–0.827) in the training set, 0.781 (95% CI: 0.740–0.821) in the validation set, and 0.795 (95% CI: 0.770–0.820) in the test set.
Conclusion
Machine learning algorithms, particularly Random Forest, are effective in predicting fall risk among hospitalized patients. These findings can significantly enhance fall prevention strategies within healthcare settings.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer