It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The treatment effects are heterogenous across patients due to the differences in their microbiomes, which in turn implies that we can enhance the treatment effect by manipulating the patient’s microbiome profile. Then, the coadministration of microbiome-based dietary supplements/therapeutics along with the primary treatment has been the subject of intensive investigation. However, for this, we first need to comprehend which microbes help (or prevent) the treatment to cure the patient’s disease.
Results
In this paper, we introduce a cloud platform, named microbiome causal machine learning (MiCML), for the analysis of treatment effects using microbiome profiles on user-friendly web environments. MiCML is in particular unique with the up-to-date features of (i) batch effect correction to mitigate systematic variation in collective large-scale microbiome data due to the differences in their underlying batches, and (ii) causal machine learning to estimate treatment effects with consistency and then discern microbial taxa that enhance (or lower) the efficacy of the primary treatment. We also stress that MiCML can handle the data from either randomized controlled trials or observational studies.
Conclusion
We describe MiCML as a useful analytic tool for microbiome-based personalized medicine. MiCML is freely available on our web server (http://micml.micloud.kr). MiCML can also be implemented locally on the user’s computer through our GitHub repository (https://github.com/hk1785/micml).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer