Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effective diagnosis of mild nutrient stress across the complete growth cycle of facility-grown tomatoes is challenging. This study proposes a deep learning framework based on CNN + LSTM, using canopy near-infrared spectroscopy from different growth stages of tomatoes as input, to diagnose mild stress of nitrogen (N), potassium (K), and calcium (Ca) throughout the entire growth cycle of facility-grown tomatoes. The study compares the diagnostic performance of Random Forest (RF), Support Vector Machine (SVM), Partial Least Squares (PLS), Convolutional Neural Networks (CNNs), and CNN + Long Short-Term Memory (LSTM) models for detecting mild nutrient stress in facility-grown tomatoes. Firstly, the preprocessing method of spectral characteristic bands combined with Savitzky-Golay (SG) + Standard Normal Variate (SNV) was determined. Subsequently, all sample data were divided into six groups: N-deficient, K-deficient, Ca-deficient, N-excess, K-excess, and Ca-excess. The aforementioned models were then used for classification prediction. The results show that RF and CNN + LSTM models demonstrated good predictive performance. Specifically, RF achieved accuracy rates of 70.14%, 90.81%, 88.59%, and 85.37% in the classification tasks of Ca-deficient, N-excess, K-excess, and Ca-excess, respectively. The CNN + LSTM model achieved accuracy rates of 93.33%, 63.33%, 99.2%, 83.33%, and 98.52% in the classification tasks of K-deficient, Ca-deficient, N-excess, K-excess, and Ca-excess, respectively. Finally, in the Leave-One-Group-Out Validation (LOGOV) for validating the model’s generalisation performance, RF performed better in the N-deficient, K-deficient, and Ca-deficient tasks, achieving diagnostic accuracy rates of 80.19%, 81.43%, and 77.02%, respectively. The CNN + LSTM model showed a diagnostic accuracy rate of 66.72% in the N-excess classification task. The study concludes that, given complete training data, the CNN + LSTM model can effectively diagnose mild nutrient stress (N, K, and Ca) in facility-grown tomatoes in most scenarios.

Details

Title
A Model for Diagnosing Mild Nutrient Stress in Facility-Grown Tomatoes Throughout the Entire Growth Cycle
Author
Yuan, Yunpeng 1 ; Sun, Guoxiang 2   VIAFID ORCID Logo  ; Chen, Guangyu 1 ; Zhang, Qihua 1 ; Liang, Lingwei 1 

 College of Engineering, Nanjing Agricultural University, Nanjing 210095, China 
 College of Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing 210031, China 
First page
307
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165753528
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.