Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The electrical conduction mechanism of PEDOT:PTSA thermoelectric conversion material supported on PET fiber was investigated with varying PTSA concentrations. Raman analysis revealed that an increasing PTSA concentration promoted transformation from a benzoid to a quinoid structure in PEDOT chains, reaching saturation in higher concentrations. All samples exhibited p-type behavior, with Seebeck coefficients ranging from 0.9 to 2.7 mV/K. The temperature dependence of electrical conductivity showed that conductivity and activation energy exhibited extreme values with increasing PTSA concentration, correlating with the saturation of quinoid structure transformation. This behavior suggests that PTSA serves dual roles: at lower concentrations, it enhances electrical conductivity through chemical doping, increasing carrier concentration and mobility via quinoid structure formation; at higher concentrations, excess PTSA induces carrier scattering without contributing to chemical doping, thereby reducing conductivity. These findings indicate that the thermoelectric properties of PEDOT:PTSA on PET fiber are governed by the balance between chemical doping effects and carrier scattering mechanisms, which are both influenced by PTSA concentration.

Details

Title
Dual Roles of PTSA in Electrical Conductivity of PEDOT:PTSA with Large Seebeck Coefficient
Author
Arimatsu, Hideki  VIAFID ORCID Logo  ; Osada, Yuki; Takagi, Ryo; Ohira, Yosuke; Hijikata, Tomoki; Fujima, Takuya  VIAFID ORCID Logo 
First page
619
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165851985
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.