Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To address the curtailment phenomenon caused by the high penetration of renewable energy in the system, an optimization scheduling strategy is proposed, considering the full process of electrolytic aluminum production and the integration of thermal power and energy storage. Firstly, to explore the differentiated response capabilities of various devices such as high-energy-consuming electrolytic aluminum units, thermal power units, and energy storage devices to effectively address uncertain variables in the power system, a Variational Mode Decomposition method is introduced to construct differentiated response methods for its low-frequency, medium-frequency, and high-frequency components. Secondly, based on the real production regulation characteristics of the high-energy-consuming electrolytic aluminum load, and considering various influencing factors such as current, temperature, and output, a scheduling model involving electrolytic aluminum load is established. Then, the power generation characteristics in other processes of electrolytic aluminum production are fully exploited to achieve energy storage conversion, replacing the energy storage batteries that respond to high-frequency components. Finally, by combining the deep peak-shaving model of thermal power units, an optimization scheduling model is established for the joint operation of the full electrolytic aluminum production load and thermal-power-storage systems, with the goal of minimizing system operating costs. The case study results show that the proposed model can significantly enhance the system’s renewable energy absorption capacity, reduce energy storage installations, and enhance the economic efficiency of the system’s peak-shaving operation.

Details

Title
System Optimization Scheduling Considering the Full Process of Electrolytic Aluminum Production and the Integration of Thermal Power and Energy Storage
Author
Yang, Yulong; Han, Yan; Wang, Jiaqi; Liu, Weiyang; Zhongwen Yan
First page
598
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165857796
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.