Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Heifangtai Loess terrace in northwest China is frequently affected by landslides due to hydrological factors, establishing it as a significant research area for loess landslides. Advanced time-series InSAR technology facilitates the retrieval of surface deformation information, thereby aiding in the monitoring of landslide deformation status. However, existing methods that analyze deformation patterns do not fully exploit the displacement time series derived from InSAR, which hampers the exploration of potentially coexisting deformation patterns within the area. This study integrates InSAR with time-series clustering methods to reveal the surface deformation patterns and their spatial distribution characteristics in Heifangtai. Initially, utilizing the Sentinel-1 ascending and descending SAR data stack from January 2020 to June 2023, we optimize the interferometric phase based on distributed scatterer characteristics to reduce noise levels and obtain higher spatial density of measurement points. Subsequently, by combining the differential interferometric datasets from both ascending and descending orbits, the multidimensional small baseline subsets technique is employed to calculate the two-dimensional deformation time series. Finally, time-series clustering methods are utilized to extract the deformation patterns present and their spatial distribution from all measurement point time series. The results indicate that the deformation of the Heifangtai is primarily distributed around the surrounding area of the platform, with subsidence deformation being more intense than horizontal deformation. The entire terrace exhibits five deformation patterns: eastward subsidence, westward subsidence, vertical subsidence, westward movement, and eastward movement. The spatial distribution of these patterns suggests that the areas beneath the platform, namely Yanguoxia Town and Dangchuan Village, may be more susceptible to landslide threats in the future. Furthermore, wavelet analysis reveals the response relationship between rainfall and various deformation patterns, further enhancing the interpretability of these patterns. These findings hold significant implications for subsequent landslide monitoring, early warning, and risk prevention.

Details

Title
Combining InSAR and Time-Series Clustering to Reveal Deformation Patterns of the Heifangtai Loess Terrace
Author
Xu, Hao 1 ; Bao Shu 2 ; Zhang, Qin 2 ; Xiong, Guohua 3 ; Wang, Li 2   VIAFID ORCID Logo 

 School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; [email protected] (H.X.); [email protected] (Q.Z.); [email protected] (L.W.) 
 School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; [email protected] (H.X.); [email protected] (Q.Z.); [email protected] (L.W.); Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, Xi’an 710054, China 
 Second Monitoring and Application Center, China Earthquake Administration, Xi’an 710054, China; [email protected] 
First page
429
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165893913
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.