Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chitosan’s effectiveness as an antimicrobial coating for biocontrol depends on its resistance to rain. Unfortunately, to the best of our knowledge, there is currently no satisfactory method for assessing this resistance, which means that field tests have to be carried out to evaluate it in situ, which are difficult to implement and therefore unsuitable for optimizing formulations. This article explores the use of genipin to detect residual chitosan on surfaces after simulated rain, using fluorescence microscopy. A first study on real vine leaves using MacroFluo microscopy was carried out but showed limitations for the intended application, notably due to the requirement for high chitosan concentrations to achieve detectable signals. A semi-quantitative method based on confocal laser scanning microscopy was then developed on model leaves, as real leaves were unsuitable due to their autofluorescence. Among the tested models, Parafilm® proved to be the most effective, showing sufficient fluorescence after reaction with genipin, even at low chitosan concentrations. For the first time, a method that does not require chromophore grafting onto chitosan has been proposed, allowing for the comparison of chitosan solution rainfastness under laboratory conditions. As an application, the effect of the counter ion on chitosan’s rain resistance was evaluated.

Details

Title
Feasibility of Genipin to Evaluate Chitosan Rainfastness for Biopesticide Applications
Author
Meynaud, Solène; Wang, Yunhui; Huet, Gael; Ibarboure, Emmanuel  VIAFID ORCID Logo  ; Gardrat, Christian; Coma, Véronique
First page
1031
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165897654
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.