Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Gossypium hirsutum is a key fiber crop that is sensitive to environmental factors, particularly drought stress, which can reduce boll size, increase flower shedding, and impair photosynthesis. The aminotransferase (AT) gene is essential for abiotic stress tolerance. A total of 3 Gossypium species were analyzed via genome-wide analysis, and the results unveiled 103 genes in G. hirsutum, 47 in G. arboreum, and 53 in G. raimondii. Phylogenetic analysis, gene structure examination, motif analysis, subcellular localization prediction, and promoter analysis revealed that the GhAT genes can be classified into five main categories and play key roles in abiotic stress tolerance. Using RNA-seq expression and KEGG enrichment analysis of GhTAT2, a coexpression network was established, followed by RT-qPCR analysis to identify hub genes. The RT-qPCR results revealed that the genes Gh_A13G1261, Gh_D13G1562, Gh_D10G1155, Gh_A10G1320, and Gh_D06G1003 were significantly upregulated in the leaf and root samples following drought stress treatment, with Gh_A13G1261 identified as the hub gene. The GhTAT2 genes were considerably enriched for tyrosine, cysteine, methionine, and phenylalanine metabolism and isoquinoline alkaloid, tyrosine, tryptophan, tropane, piperidine, and pyridine alkaloid biosynthesis. Under drought stress, KEGG enrichment analysis manifested significant upregulation of amino acids such as L-DOPA, L-alanine, L-serine, L-homoserine, L-methionine, and L-cysteine, whereas metabolites such as maleic acid, p-coumaric acid, quinic acid, vanillin, and hyoscyamine were significantly downregulated. Silencing the GhTAT2 gene significantly affected the shoot and root fresh weights of the plants compared with those of the wild-type plants under drought conditions. RT-qPCR analysis revealed that GhTAT2 expression in VIGS-treated seedlings was lower than that in both wild-type and positive control plants, indicating that silencing GhTAT2 increases sensitivity to drought stress. In summary, this thorough analysis of the gene family lays the groundwork for a detailed study of the GhTAT2 gene members, with a specific focus on their roles and contributions to drought stress tolerance.

Details

Title
Insights into the Role of GhTAT2 Genes in Tyrosine Metabolism and Drought Stress Tolerance in Cotton
Author
Mehari, Teame Gereziher 1   VIAFID ORCID Logo  ; Tang, Jungfeng 1 ; Gu, Haijing 1 ; Fang, Hui 1   VIAFID ORCID Logo  ; Han, Jinlei 1   VIAFID ORCID Logo  ; Zheng, Jie 2   VIAFID ORCID Logo  ; Liu, Fang 2   VIAFID ORCID Logo  ; Wang, Kai 1 ; Yao, Dengbing 1 ; Wang, Baohua 1 

 School of Life Sciences, Nantong University, Nantong 226019, China; [email protected] (T.G.M.); [email protected] (J.T.); [email protected] (H.G.); [email protected] (H.F.); [email protected] (J.H.); [email protected] (K.W.) 
 State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; [email protected] (J.Z.); [email protected] (F.L.) 
First page
1355
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165902812
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.