Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Diesel vehicles are recognized as significant mobile sources of particulate matter emissions. As a renewable and environmentally friendly alternative to conventional fossil diesel, biodiesel offers the benefit of reducing greenhouse gas emissions. However, existing research on biodiesel emissions primarily focuses on primary emissions, with a limited understanding of their impact on secondary organic aerosol (SOA) formation. In this study, a diesel engine test bench was employed under idle conditions using three commonly used biodiesel blends. Exhaust emissions were directly introduced into the HAP-SWFU chamber, a quartz glass smog chamber designed to characterize both primary emissions and SOA formation during the photochemical oxidation process. The black carbon and primary organic aerosol (POA) emission factors for the three biodiesel blends under idle conditions ranged from 0.31 to 0.58 g kg−1 fuel and 0.99 to 1.06 g kg−1 fuel, respectively. The particle size of exhaust particulates peaked between 20 and 30 nm, and nucleation-idle conditions were found to be the dominating mode. The SOA production factor was between 0.92 and 1.15 g kg−1 fuel, and the SOA/POA ratio ranged from 1.35 to 2.37, with an average of 1.86. This study concludes that the POA emission factor for biodiesel under idle conditions is comparable to values reported in previous studies on pure diesel exhaust, with the maximum SOA production factor reduced by 38%.

Details

Title
Primary Particulate Matter and Aerosol Emissions from Biodiesel Engines During Idling in Plateau Environments of China
Author
Xu, Dingmin 1 ; Yu, Hongyang 1 ; Cai, Wenjie 1 ; Xu, Jiacheng 2 ; Li, Jiaqiang 3 

 College of Mechanical and Traffic Engineering, Southwest Forestry University, Kunming 650224, China; [email protected] (D.X.); [email protected] (H.Y.); [email protected] (W.C.) 
 Key Laboratory of Modern Automotive Components Technology of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; [email protected] 
 Key Laboratory of Environmental Protection and Safety for Motor Vehicles in Plateau and Mountainous Regions of Yunnan Province, Kunming 650224, China 
First page
976
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165902826
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.