Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.

Details

Title
Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project
Author
Hartmann, Sabine 1   VIAFID ORCID Logo  ; Valles, Raquel 1 ; Schmitt, Annette 2   VIAFID ORCID Logo  ; Al-Zuriqat, Thamer 3   VIAFID ORCID Logo  ; Kosmas Dragos 3 ; Gölzhäuser, Peter 1 ; Jung, Jan Thomas 2 ; Villinger, Georg 2   VIAFID ORCID Logo  ; Diana Varela Rojas 4 ; Bergmann, Matthias 4 ; Pullmann, Torben 4 ; Heimer, Dirk 4 ; Stahl, Christoph 5 ; Stollewerk, Axel 6 ; Hilgers, Michael 6 ; Jansen, Eva 6 ; Schoenebeck, Brigitte 6 ; Buchholz, Oliver 7 ; Papadakis, Ioannis 8 ; Merkle, Dominik Robert 2 ; Jan-Iwo Jäkel 1   VIAFID ORCID Logo  ; Mackenbach, Sven 1 ; Klemt-Albert, Katharina 1 ; Reiterer, Alexander 2   VIAFID ORCID Logo  ; Smarsly, Kay 3   VIAFID ORCID Logo 

 Chair and Institute of Construction Management, Digital Engineering and Robotics in Construction, RWTH Aachen University, 52070 Aachen, Germany 
 Department of Sustainable Systems Engineering, University of Freiburg, 79110 Freiburg im Breisgau, Germany; Fraunhofer Institute for Physical Measurement Techniques IPM, 79110 Freiburg im Breisgau, Germany 
 Institute of Digital and Autonomous Construction, Hamburg University of Technology, 21079 Hamburg, Germany 
 Albert.ing GmbH, 60314 Frankfurt am Main, Germany 
 Galileo-ip Ingenieure GmbH, 92665 Altenstadt an der Waldnaab, Germany 
 Kempen Krause Ingenieure GmbH, 52072 Aachen, Germany 
 Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH, 52066 Aachen, Germany 
 Dr. Papadakis GmbH, 45276 Essen, Germany 
First page
299
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165914935
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.