Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ensuring the safety and quality of poultry products requires efficient detection and removal of foreign materials during processing. Hyperspectral imaging (HSI) offers a non-invasive mechanism to capture detailed spatial and spectral information, enabling the discrimination of different types of contaminants from poultry muscle and non-muscle external tissues. When integrated with advanced deep learning (DL) models, HSI systems can achieve high accuracy in detecting foreign materials. However, the high dimensionality of HSI data, the computational complexity of DL models, and the high-paced nature of poultry processing environments pose challenges for real-time implementation in industrial settings, where the speed of imaging and decision-making is critical. In this study, we address these challenges by optimizing DL inference for HSI-based foreign material detection through a combination of post-training quantization and hardware acceleration techniques. We leveraged hardware acceleration utilizing the TensorRT module for NVIDIA GPU to enhance inference speed. Additionally, we applied half-precision (called FP16) post-training quantization to reduce the precision of model parameters, decreasing memory usage and computational requirements without any loss in model accuracy. We conducted simulations using two hypothetical hyperspectral line-scan cameras to evaluate the feasibility of real-time detection in industrial conditions. The simulation results demonstrated that our optimized models could achieve inference times compatible with the line speeds of poultry processing lines between 140 and 250 birds per minute, indicating the potential for real-time deployment. Specifically, the proposed inference method, optimized through hardware acceleration and model compression, achieved reductions in inference time of up to five times compared to unoptimized, traditional GPU-based inference. In addition, it resulted in a 50% decrease in model size while maintaining high detection accuracy that was also comparable to the original model. Our findings suggest that the integration of post-training quantization and hardware acceleration is an effective strategy for overcoming the computational bottlenecks associated with DL inference on HSI data.

Details

Title
Deep Learning Model Compression and Hardware Acceleration for High-Performance Foreign Material Detection on Poultry Meat Using NIR Hyperspectral Imaging
Author
Khan, Zirak 1   VIAFID ORCID Logo  ; Yoon, Seung-Chul 2   VIAFID ORCID Logo  ; Bhandarkar, Suchendra M 1 

 School of Computing, University of Georgia, Athens, GA 30602, USA; [email protected] (Z.K.); [email protected] (S.M.B.) 
 Quality and Safety Research Unit, U.S. National Poultry Research Center, U.S. Department of Agriculture—Agricultural Research Service, Athens, GA 30605, USA 
First page
970
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165918686
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.