Abstract
Background
Genes and gluten are necessary, but insufficient to cause celiac disease (CeD), as risk alleles (DQ2 or DQ8) are prevalent in ~30–40% of the healthy population consuming gluten. Gut microbiota shifts and infections have been proposed as risk modulators. Biogeographic characterization of the microbiota in CeD patients and its functional significance are limited, particularly at the duodenum, the main site of inflammation.
Aims
We studied microbiota composition and predicted function along the gastrointestinal tract and investigated the impact of host genetics and CeD activity.
Methods
We used 16S rRNA gene sequencing (Illumina) and predicted gene function analysis (PICRUSt2), to study the microbiota in duodenal biopsies (D1, D2 and D3), duodenal aspirates, and fecal samples from patients with active CeD (n= 24) (biopsy and serology confirmed) and controls (non-celiac, n= 41). CeD alleles were determined in consented participants using DQ-CD typing. Small intestinal samples from controls (DQ2-/- = 14; DQ2+/- = 7) and CeD (DQ2+/- = 12) were used for further analysis and to colonize C57BL/6 germ-free mice for gluten metabolism studies.
Results
Microbiota community composition and predicted function was mainly determined by intestinal location (P= 0.001). Within the duodenum, but not in stool, CeD patients had increased abundance of opportunistic pathogens. Escherichia coli was increased in D1, Streptococcus pneumoniae in D2, and Neisseria in D3 versus controls. Predicted bacterial protease and peptidase genes were altered in CeD DQ2+/- patients versus DQ2-/- controls. In DQ2+/- controls, fewer predicted bacterial genes were altered compared to CeD DQ2+/- patients. Impaired capacity to metabolize gluten was confirmed in germ-free mice colonized with microbiota from CeD (DQ2+/-), but not DQ2+/- or DQ2-/- controls.
Conclusions
In the duodenum, CeD is associated with increased opportunistic pathogens and altered bacterial proteolytic profile. These are not determined by genetic predisposition, as CeD and controls with similar genetic background differed in its predicted bacterial proteolytic function, which was confirmed in mice colonized with duodenal microbiota using these cohorts. Our study highlights the need for defining sampling location in studies investigating the role of microbiota in CeD.
Funding Agencies
CAG, CCC, CIHR
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Farncombe Family Digestive Health Research Institute, Hamilton, ON, Canada
2 Universidad Nacional de la Plata, La Plata, Argentina





