It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study introduces a novel approach to traffic congestion detection using Reinforcement Learning (RL) of machine learning classifiers enhanced by Explainable Artificial Intelligence (XAI) techniques in Smart City (SC). Conventional traffic management systems rely on static rules, and heuristics face challenges in dynamically addressing urban traffic problems' complexities. This study explains the novel Reinforcement Learning (RL) framework integrated with an Explainable Artificial Intelligence (XAI) approach to deliver more transparent results. The model significantly reduces the missing data rate and improves overall prediction accuracy by incorporating RL for real-time adaptability and XAI for clarity. The proposed method enhances security, privacy, and prediction accuracy for traffic congestion detection by using Machine Learning (ML). Using RL for adaptive learning and XAI for interpretability, the proposed model achieves improved prediction and reduces the missing data rate, with an accuracy of 98.10, which is better than the existing methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer