It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A noted impact of urbanization is the tendency for biotic homogenization, or the increase of similarity of geographically disparate communities. On the other hand, some urban habitats harbor biodiversity native to their region, a role potentially important in xeric landscapes, with irrigation increasing the coverage and availability of mesic habitats in an otherwise water-limited landscape. We assessed the relative importance of urban yards as agents of biotic homogenization or riparian refugia by characterizing community composition of Tamaulipan thornforest land snail assemblages across a pronounced precipitation gradient in far south Texas, USA. We quantified α- and β-diversity and assessed whether the land snail fauna of urban yards are more similar to each other across a precipitation gradient than they are to their wild counterparts, as well as determined the significance of moisture in driving Tamaulipan thornforest β-diversity, both in terms of turnover (changing species composition) and nestedness (species loss). Sites with both the wild and wet conditions had the highest values of species richness and abundance. Urban land snail communities were significantly homogenized, outweighing the influence of the precipitation gradient. We did not find urban yards served as a refuge for native, moisture-dependent, riparian snails. Our analyses find that turnover, not nestedness, is the largest contributor to β-diversity in these assemblages. Studies of urbanization should address regional spatial scales to quantify how urbanization modifies regional biodiversity arising from background environmental gradients. Such an approach could lead to improved understanding of how large metroplex areas could be used to maintain and even promote biodiversity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Biology, The University of Texas Rio Grande Valley , 1201 W. University Dr., Edinburg, TX, 78539,, USA
2 Department of Botany and Zoology, Masaryk University , Kotlářská 2 , Brno CZ-61137, Czech Republic