It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Prevailing poly(dT)-primed 3′ single-cell RNA-seq protocols generate barcoded cDNA fragments containing the reverse transcriptase priming site or in principle the polyadenylation site. Direct sequencing across this site was historically difficult because of DNA sequencing errors induced by the homopolymeric primer at the ‘barcode’ end. Here, we evaluate the capability of ‘avidity base chemistry’ DNA sequencing from Element Biosciences to sequence through the primer and enable accurate paired-end read alignment and precise quantification of polyadenylation sites. We find that the Element Aviti instrument sequences through the thymine homopolymer into the subsequent cDNA sequence without detectable loss of accuracy. The additional sequence enables direct and independent assignment of reads to polyadenylation sites, which bypasses the complexities and limitations of conventional approaches but does not consistently improve read mapping rates compared to single-end alignment. We also characterize low-level artifacts and demonstrate necessary adjustments to adapter trimming and sequence alignment regardless of platform, particularly in the context of extended read lengths. Our analyses confirm that Element avidity sequencing is an effective alternative to Illumina sequencing for standard single-cell RNA-seq, particularly for polyadenylation site measurement but do not rule out the potential for similar performance from other emerging platforms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Biomedical Informatics, University of Utah School of Medicine , 421 Wakara Way #140, Salt Lake City , UT 84112 , USA
2 RNA Bioscience Initiative, University of Colorado School of Medicine , 12801 E 17th Ave, Aurora , CO 80045 , USA