Abstract

Tubby-like proteins (TLPs) are ubiquitous in eukaryotes and function in abiotic stress tolerance of some plants. Cassava (Manihot esculenta Crantz) is a high-yield starch root crop and has a high tolerance to poor soil conditions and abiotic stress. However, little is known about TLP gene characteristics and their expression in cassava. We identified cassava TLP genes, MeTLPs, and further analysed structure, duplication, chromosome localization and collinearity, cis-acting elements in the promoter regions and expression patterns of MeTLPs, and three-dimensional structure of the encoded proteins MeTLPs. In conclusion, there is a MeTLP family containing 13 members, which are grouped into A and C subfamilies. There are 11 pairs of MeTLPs that show the duplication which took place between 10.11 and 126.69 million years ago. Two MeTLPs 6 and 9 likely originate from one gene in an ancestral species, may be common ancestors for other MeTLPs and would most likely not be eligible for ubiquitin-related protein degradation because their corresponding proteins (MeTLPs 6 and 9) have no the F-box domain in the N-terminus. MeTLPs feature differences in the number from TLPs in wheat, apple, Arabidopsis, poplar and maize, and are highlighted by segmental duplication but more importantly by the chromosomal collinearity with potato StTLPs. MeTLPs are at least related to abiotic stress tolerance in cassava. However, the subtle differences in function among MeTLPs are predictable partly because of their differential expression profiles, which are coupled with various cis‑acting elements existing in the promoter regions depending on genes.

Details

Title
Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava
Author
Ming-You, Dong 1 ; Xian-Wei, Fan 1 ; Xiang-Yu, Pang 1 ; You-Zhi, Li 1 

 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China 
Publication year
2019
Publication date
Dec 2019
Publisher
Oxford University Press
e-ISSN
20412851
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3169456117
Copyright
© The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.