It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Invasive alien plant species impart considerable impacts that contribute to the decline of biodiversity worldwide. The ability of an invasive species to overcome barriers to establish and spread in new environments, and the long-term effects of plant invasions supporting their persistence are keys to invasion success. The capacity of introduced species to form soil seed banks can contribute to their invasiveness, yet few studies of invaders have addressed seed bank dynamics. Improved knowledge of this recruitment process can improve conservation management. We studied temporal and spatial changes in soil seed bank characteristics of the cordgrass Spartina densiflora from two continental invaded ranges. In the Odiel Marshes (Southwest Iberian Peninsula), S. densiflora formed transient seed banks (<1 year). At Humboldt Bay Estuary (California), viable seeds persisted for at least 4 years though the germination percentage fell abruptly after the first year from 29 % to less than 5 % of remaining viable seeds. Total soil seed bank density increased with S. densiflora above-ground cover in both estuaries, pointing to the transient component of the seed bank as a critical component of vegetation dynamics during S. densiflora invasion. Even so, seed densities as high as c. 750 seeds m-2 in Odiel Marshes and c. 12 400 seeds m-2 in Humboldt Bay were recorded in some plots without fruiting S. densiflora plants. S. densiflora spikelet (dispersal unit) density was more than double close to the sediment surface than deeper within soil. Our study shows the importance of evaluating seed banks during the design of invasive species management since seed bank persistence may vary among invaded sites, and can affect the timing and duration required for desired management outcomes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biology, College of Science, King Khalid University 61413, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523, Qena, Egypt
2 U.S. Fish and Wildlife Service, 6800 Lanphere Rd. Arcata, CA 95521, USA
3 Departamento de Ciencias Integradas, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071, Huelva, Spain
4 USDA-Agricultural Research Service, Invasive Species and Pollinator Health Research Unit, Department of Plant Sciences MS-4, University of California, Davis, CA 95616, USA
5 Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain