It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Increasingly frequent heat waves threaten the reproduction of flowering plants; compromising the future persistence, adaptive capacity, and dispersal of wild plant populations, and also the yield of fruit-bearing crop plants. Heat damages the development of sensitive floral organs and gametes, which inhibits pollen germination, pollen tube growth, and fertilization. However, the role of heat has not been integrated into the framework of pollen quantity and quality limitation and how heat influences the success of cross and self-pollination. We exposed developing flowers to either controlled temperature (25 °C:20 °C) or extreme heat (35 °C:20 °C) over 72 h. We then hand-pollinated them with either crossed or self-derived pollen from the same temperature treatment to determine the direct and interactive effects of simulated heatwaves on pollen tube growth and resulting seed set. We also collected anthers from virgin flowers to measure heat impacts on pollen production. Under cooler control temperatures pollen tube survival of self-derived pollen was approximately 27% lower than that of crossed pollen. Pollen tube survival in heat-treated cross-pollinated and heat-treated self-pollinated flowers were 71% and 77% lower compared to flowers cross-pollinated at control temperatures. These differences in pollen tube survival rate between heat-treated cross-pollinated and heat-treated self-pollinated flowers were insignificant. Furthermore, extreme heat reduced seed set by 87%, regardless of pollen origin, and also reduced pollen production during flower development by approximately 20%. Our results suggest flowers that develop during heatwaves are likely to experience exacerbated pollen quantity and quality limitation driven by changes in pollen production and pollen vigour. Heatwave-induced pollen limitation will likely reduce crop yields in agricultural systems, and depress mating and reproduction in wild plant species, the latter of which may hinder the adaptive capacity of plants to a rapidly changing world.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Graduate Group in Ecology, University of California – Davis , 1 Shields Ave, Davis, CA 95616 , USA
2 Department of Entomology and Nematology, University of California – Davis , 1 Shields Ave, Davis, CA 95616 , USA