It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Successive stamen movement directly controls pollen presentation schedules through sequential stamen maturation and changes the extent of herkogamy by altering the positions of sexual organs. However, the implications of such movements in terms of pollination are not well understood. Pollen presentation theory predicts that staggered pollen presentation should be favoured when plants are subject to diminishing returns on pollen transfer. Herkogamy on the other hand, has been interpreted as an adaptive trait that reduces sexual interference in hermaphrodite flowers. In this study, we conducted floral manipulations to determine the function of successive stamen movement in pollen transfer. By artificially manipulating the flowers to present two anthers simultaneously in the floral centre, we attempted to investigate whether changes in the anther presentation strategy affect pollen removal, deposition and the efficiency of pollinators. Compared with the natural treatment, the pollen transfer efficiency of halictid bees decreased significantly when the flowers were manipulated to present two anthers simultaneously. Although the presentation of two anthers simultaneously led to a similar pollen removal rate, there was a significant reduction in pollen deposition on neighbouring stigmas. To evaluate the effect of movement herkogamy on pollen export and deposition and seed set, the flowers were manipulated with or without the movement of stamen bending out from the floral centre. Pollen export decreased significantly when the central anther was moved away from the pistil, and pollen deposition and seed set declined significantly when the five spent anthers were retained on the pistil. Our study provides good support for the pollen presentation theory and provides direct experimental evidence that successive stamen movement could increase pollen transfer efficiency by sequential stamen maturation. Moreover, movement herkogamy promotes pollen export, deposition and seed set, and could therefore be regarded as an effective mechanism to reduce interference between male and female functions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Life Sciences, Wuhan University, 430072 Wuhan, China
2 Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, China