It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
ABSTRACT
Background
Hospitalized patients with hypokalemia are heterogeneous and cluster analysis, an unsupervised machine learning methodology, may discover more precise and specific homogeneous groups within this population of interest. Our study aimed to cluster patients with hypokalemia at hospital admission using an unsupervised machine learning approach and assess the mortality risk among these distinct clusters.
Methods
We performed consensus clustering analysis based on demographic information, principal diagnoses, comorbidities and laboratory data among 4763 hospitalized adult patients with admission serum potassium ≤3.5 mEq/L. We calculated the standardized mean difference of each variable and used the cutoff of ±0.3 to identify each cluster's key features. We assessed the association of the hypokalemia cluster with hospital and 1-year mortality.
Results
Consensus cluster analysis identified three distinct clusters that best represented patients’ baseline characteristics. Cluster 1 had 1150 (32%) patients, cluster 2 had 1344 (28%) patients and cluster 3 had 1909 (40%) patients. Based on the standardized difference, patients in cluster 1 were younger, had less comorbidity burden but higher estimated glomerular filtration rate (eGFR) and higher hemoglobin; patients in cluster 2 were older, more likely to be admitted for cardiovascular disease and had higher serum sodium and chloride levels but lower eGFR, serum bicarbonate, strong ion difference (SID) and hemoglobin, while patients in cluster 3 were older, had a greater comorbidity burden, higher serum bicarbonate and SID but lower serum sodium, chloride and eGFR. Compared with cluster 1, cluster 2 had both higher hospital and 1-year mortality, whereas cluster 3 had higher 1-year mortality but comparable hospital mortality.
Conclusion
Our study demonstrated the use of consensus clustering analysis in the heterogeneous cohort of hospitalized hypokalemic patients to characterize their patterns of baseline clinical and laboratory data into three clinically distinct clusters with different mortality risks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, MN , USA
2 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Jacksonville, FL , USA
3 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Phoenix, AZ , USA
4 Department of Internal Medicine, Faculty of Medicine, Thammasat University , Pathum Thani , Thailand