It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Current therapies for anemia of chronic kidney disease (CKD) include administration of supplemental iron (intravenous and/or oral), blood transfusions and replacement of erythropoietin through the administration of recombinant human erythropoietin (rhEPO) and rhEPO analogs, each with limitations. Daprodustat is an orally active, small molecule hypoxia-inducible factor-prolyl hydroxylase inhibitor that is currently in Phase 3 clinical studies. As it is well appreciated that the kidney represents a major route of elimination of many drugs, and daprodustat will be administered to patients with advanced CKD as well as patients with end-stage kidney disease, it is important to characterize the pharmacokinetic profile in these patient populations to safely dose this potential new medicine.
Methods
The primary objective of these studies, conducted under two separate protocols and with identical assessments and procedures, was to characterize the steady-state pharmacokinetics of daprodustat and the six predominant metabolites (i.e. metabolites present in the highest concentration in circulation) in subjects with normal renal function, anemic non-dialysis (ND)-dependent CKD subjects (CKD Stage 3/4) and anemic subjects on either hemodialysis (HD) or peritoneal dialysis (PD). All enrolled subjects were administered daprodustat 5 mg once daily for 14 days (all except HD subjects) or 15 days (for HD subjects). Blood, urine and peritoneal dialysate were collected at various times for measurement of daprodustat, predominant metabolite, erythropoietin and hepcidin levels.
Results
The pharmacokinetic properties of steady-state daprodustat peak plasma concentration (Cmax), area under the plasma daprodustat concentration-time curve (AUC) and the time of Cmax (tmax) were comparable between all cohorts in this study. In addition, there was no clinically relevant difference in these properties in the HD subjects between a dialysis and ND day. For CKD Stage 3/4, HD (dialysis day) and PD subjects, the AUC of all daprodustat metabolites assessed was higher, while the Cmax was slightly higher than that in subjects with normal renal function. Over the course of the 14 or 15 days of daprodustat administration, hemoglobin levels were seen to be relatively stable in the subjects with normal renal function, CKD Stage 3/4 and PD subjects, while HD subjects had a decrease of 1.9 gm/dL. All renally impaired subjects appeared to have similar erythropoietin responses to daprodustat, with approximately a 3-fold increase in these levels. In subjects with minimal to no change in hemoglobin levels, hepcidin levels remained relatively stable. Daprodustat, administered 5 mg once daily for 14–15 days, was generally well tolerated with a safety profile consistent with this patient population.
Conclusion
These studies demonstrated no clinically meaningful change in the pharmacokinetic properties of daprodustat when administered to subjects with various degrees of renal impairment, while for CKD Stage 3/4, HD (dialysis day) and PD subjects, the Cmax and AUC of all daprodustat metabolites assessed were higher than in subjects with normal renal function. Administration of daprodustat in this study appeared to be generally safe and well tolerated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Medicine Delivery Unit, GlaxoSmithKline, Collegeville, PA, USA
2 Clinical Pharmacology Science and Study Operations, GlaxoSmithKline, Abbotsford, Victoria, Australia
3 Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, Upper Merion, PA, USA
4 Clinical Pharmacology, Roivant Pharma, Durham, NC, USA
5 Clinical Statistics, GlaxoSmithKline, Bangalore, Karnataka, India
6 Oncology, Daiichi Sankyo Co., Ltd, Basking Ridge, NJ, USA