It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The increasing frequency and duration of marine heatwaves attributed to climate change threatens coastal elasmobranchs and may exacerbate existing anthropogenic stressors. While the elasmobranch stress response has been well studied, the role of the unique corticosteroid—1α-hydroxycorticosterone (1α-OHB)—in energy balance is not understood. Therefore, 1α-OHB’s utility as a stress biomarker in elasmobranch conservation physiology is equivocal. Here, we analyse the roles of corticosteroids, 1α-OHB and corticosterone, and metabolites, glucose and 3-hydroxybutyrate (3-HB), in response to stress in a protected tropical shark species, the blacktip reef shark (Carcharhinus melanopterus). Wild-caught neonates were exposed to ambient (27°C) or heatwave conditions (29°C) and subsequently a simulated fishing stressor (1 min air exposure). Blood samples were taken prior to temperature exposure, prior to air exposure, and 30 min, 1 h, 24 h, and 48 h post-air exposure at treatment temperatures. Plasma 1α-OHB was elevated for 48 h in 27°C-exposed sharks but declined over time in 29°C-exposed sharks. Plasma 1α-OHB was not correlated with either metabolite. Plasma glucose was higher and plasma 3-HB was lower in 29°C-exposed sharks. In a separate experiment, blood samples were collected from both neonate and adult sharks immediately following capture and again 5 min later, and analysed for corticosteroids and metabolites. Plasma 1α-OHB increased in neonates within 5 min, but neonates displayed lower plasma 1α-OHB and higher glucose concentrations than adults. We conclude that 1α-OHB does not serve as a classic glucocorticoid role in C. melanopterus under these stressors. Furthermore, we show for the first time, ontogenetic differences in plasma 1α-OHB. Ultimately, our findings provide insights into hormonal control of energy mobilization during stress in C. melanopterus, particularly during simulated heatwave conditions, which seem to alter both endocrine and energy mobilization. Further work is needed to determine the utility of 1α-OHB as a biomarker for the mobilization of energy during a stress event in elasmobranchs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
2 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
3 Disney Animals, Science and Environment, Disney’s Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista, FL 32830, USA
4 PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d’Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
5 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia