It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hybrid breeding in sorghum [Sorghum bicolor (L.) Moench] utilizes the cytoplasmic-nuclear male sterility (CMS) system for seed production and subsequently harnesses heterosis. Since the cost of developing and evaluating inbred and hybrid lines in the CMS system is costly and time-consuming, genomic prediction of parental lines and hybrids is based on genetic data genotype. We generated 602 hybrids by crossing two female (A) lines with 301 diverse and elite male (R) lines from the sorghum association panel and collected phenotypic data for agronomic traits over two years. We genotyped the inbred parents using whole genome resequencing and used 2,687,342 high quality (minor allele frequency > 2%) single nucleotide polymorphisms for genomic prediction. For grain yield, the experimental hybrids exhibited an average mid-parent heterosis of 40%. Genomic best linear unbiased prediction (GBLUP) for hybrid performance yielded an average prediction accuracy of 0.76–0.93 under the prediction scenario where both parental lines in validation sets were included in the training sets (T2). However, when only female tester was shared between training and validation sets (T1F), prediction accuracies declined by 12–90%, with plant height showing the greatest decline. Mean accuracies for predicting the general combining ability of male parents ranged from 0.33 to 0.62 for all traits. Our results showed hybrid performance for agronomic traits can be predicted with high accuracy, and optimizing genomic relationship is essential for optimal training population design for genomic selection in sorghum breeding.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Advanced Plant Technology Program, Clemson University , Clemson, SC 29634 , USA
2 Department of Plant and Environmental Sciences, Clemson University , Clemson, SC 29634 , USA
3 Pee Dee Research and Education Center, Clemson University , Florence, SC 29506 , USA
4 Carolina Seed Systems, Inc. , Florence, SC 29506 , USA