It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Coffee is one of the most important beverages and trade products in the world. Among the multiple research initiatives focused on coffee sustainability, plant breeding provides the best means to increase phenotypic performance and release cultivars that could meet market demands. Since coffee is well adapted to a diversity of tropical environments, an important question for those confronting the problem of evaluating phenotypic performance is the relevance of genotype-by-environment interaction. As a perennial crop with a long juvenile phase, coffee is subjected to significant temporal and spatial variations. Such facts not only hinder the selection of promising materials but also cause a majority of complaints among growers. In this study, we hypothesized that trait stability in coffee is genetically controlled and therefore is predictable using molecular information. To test it, we used genome-based methods to predict stability metrics computed with the primary goal of selecting coffee genotypes that combine high phenotypic performance and stability for target environments. Using 2 populations of Coffea canephora, evaluated across multiple years and locations, our contribution is 3-fold: (1) first, we demonstrated that the number of harvest evaluations may be reduced leading to accelerated implementation of molecular breeding; (2) we showed that stability metrics are predictable; and finally, (3) both stable and high-performance genotypes can be simultaneously predicted and selected. While this research was carried out on representative environments for coffee production with substantial crossover in genotypic ranking, we anticipate that genomic prediction can be an efficient tool to select coffee genotypes that combine high performance and stability across years and the target locations here evaluated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida , Gainesville, FL 32611 , USA
2 Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural—Incaper , Vitoria, ES 29052-010 , Brazil