It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Earth has lately been suffering from unforeseen catastrophic phenomena related to the consequences of the greenhouse effect. It is therefore essential not only that sustainability criteria be incorporated into the everyday lifestyle, but also that energy-saving procedures be enhanced. According to the number of wind farms installed annually, wind energy is among the most promising sustainable-energy sources. Taking into account the last statement for energy-saving methods, it is essential to value the contribution of wind energy not only in eliminating CO2 emissions when producing electricity from wind, but also in assessing the total environmental impact associated with the entire lifetime of all the processes related with this energy-production chain. In order to quantify such environmental impacts, life-cycle analysis (LCA) is performed. As a matter of fact, there are a very limited number of studies devoted to LCA of onshore wind-energy-converter supporting towers—a fact that constitutes a first-class opportunity to perform high-end research. In the present work, the life-cycle performance of two types of tall onshore wind-turbine towers has been investigated: a lattice tower and a tubular one. For comparison reasons, both tower configurations have been designed to sustain the same loads, although they have been manufactured by different production methods, different amounts of material were used and different mounting procedures have been applied; all the aforementioned items diversify in their overall life-cycle performance as well as their performance in all LCA phases examined separately. The life-cycle performance of the two different wind-turbine-tower systems is calculated with the use of efficient open LCA software and valuable conclusions have been drawn when combining structural and LCA results in terms of comparing alternative configurations of the supporting systems for wind-energy converters.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Civil Engineering Department, School of Engineering, University of Birmingham, Edgbaston, Birmingham, UK
2 Civil Engineering Department, School of Engineering, Aristotle University of Thessaloniki, Greece