It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Degenerative suspensory ligament desmitis is a progressive idiopathic condition that leads to scarring and rupture of suspensory ligament fibers in multiple limbs in horses. The prevalence of degenerative suspensory ligament desmitis is breed related. Risk is high in the Peruvian Horse, whereas pony and draft breeds have low breed risk. Degenerative suspensory ligament desmitis occurs in families of Peruvian Horses, but its genetic architecture has not been definitively determined. We investigated contrasts between breeds with differing risk of degenerative suspensory ligament desmitis and identified associated risk variants and candidate genes. We analyzed 670k single nucleotide polymorphisms from 10 breeds, each of which was assigned one of the four breed degenerative suspensory ligament desmitis risk categories: control (Belgian, Icelandic Horse, Shetland Pony, and Welsh Pony), low risk (Lusitano, Arabian), medium risk (Standardbred, Thoroughbred, Quarter Horse), and high risk (Peruvian Horse). Single nucleotide polymorphisms were used for genome-wide association and selection signature analysis using breed-assigned risk levels. We found that the Peruvian Horse is a population with low effective population size and our breed contrasts suggest that degenerative suspensory ligament desmitis is a polygenic disease. Variant frequency exhibited signatures of positive selection across degenerative suspensory ligament desmitis breed risk groups on chromosomes 7, 18, and 23. Our results suggest degenerative suspensory ligament desmitis breed risk is associated with disturbances to suspensory ligament homeostasis where matrix responses to mechanical loading are perturbed through disturbances to aging in tendon (PIN1), mechanotransduction (KANK1, KANK2, JUNB, SEMA7A), collagen synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix responses to hypoxia (PRDX2), lipid metabolism (LDLR, VLDLR), and BMP signaling (GREM2). Our results do not suggest that suspensory ligament proteoglycan turnover is a primary factor in disease pathogenesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison , Madison, WI 53706, USA
2 Department of Animal and Dairy Sciences, University of Wisconsin-Madison , Madison, WI 53706, USA
3 Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX 77843, USA