It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Gray mold, a disease of strawberry (Fragaria × ananassa) caused by the ubiquitous necrotroph Botrytis cinerea, renders fruit unmarketable and causes economic losses in the postharvest supply chain. To explore the feasibility of selecting for increased resistance to gray mold, we undertook genetic and genomic prediction studies in strawberry populations segregating for fruit quality and shelf life traits hypothesized to pleiotropically affect susceptibility. As predicted, resistance to gray mold was heritable but quantitative and genetically complex. While every individual was susceptible, the speed of symptom progression and severity differed. Narrow-sense heritability ranged from 0.38 to 0.71 for lesion diameter (LD) and 0.39 to 0.44 for speed of emergence of external mycelium (EM). Even though significant additive genetic variation was observed for LD and EM, the phenotypic ranges were comparatively narrow and genome-wide analyses did not identify any large-effect loci. Genomic selection (GS) accuracy ranged from 0.28 to 0.59 for LD and 0.37 to 0.47 for EM. Additive genetic correlations between fruit quality and gray mold resistance traits were consistent with prevailing hypotheses: LD decreased as titratable acidity increased, whereas EM increased as soluble solid content decreased and firmness increased. We concluded that phenotypic and GS could be effective for reducing LD and increasing EM, especially in long shelf life populations, but that a significant fraction of the genetic variation for resistance to gray mold was caused by the pleiotropic effects of fruit quality traits that differ among market and shelf life classes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA