It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
2 School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
3 School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia
4 Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
5 School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Astron Environmental Services, 129 Royal Street, East Perth, WA 6004, Australia