It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Objectives
Cystic fibrosis (CF) patients are often colonized with Pseudomonas aeruginosa. During treatment, P. aeruginosa can develop subpopulations exhibiting variable in vitro antimicrobial (ABX) susceptibility patterns. Heteroresistance (HR) may underlie reported discrepancies between in vitro susceptibility results and clinical responses to various ABXs. Here, we sought to examine the presence and nature of P. aeruginosa polyclonal HR (PHR) and monoclonal HR (MHR) to ceftolozane/tazobactam in isolates originating from CF pulmonary exacerbations.
Methods
This was a single-centre, non-controlled study. Two hundred and forty-six P. aeruginosa isolates from 26 adult CF patients were included. PHR was defined as the presence of different ceftolozane/tazobactam minimum inhibitory concentration (MIC) values among P. aeruginosa isolates originating from a single patient specimen. Population analysis profiles (PAPs) were performed to assess the presence of MHR, defined as ≥4-fold change in the ceftolozane/tazobactam MIC from a single P. aeruginosa colony.
Results
Sixteen of 26 patient specimens (62%) contained PHR P. aeruginosa populations. Of these 16 patients, 6 (23%) had specimens in which PHR P. aeruginosa isolates exhibited ceftolozane/tazobactam MICs with categorical differences (i.e. susceptible versus resistant) compared to results reported as part of routine care. One isolate, PSA 1311, demonstrated MHR. Canonical ceftolozane/tazobactam resistance genes were not found in the MHR isolates (MHR PSA 1311 or PHR PSA 6130).
Conclusions
Ceftolozane/tazobactam PHR exists among P. aeruginosa isolates in this work, and approximately a quarter of these populations contained isolates with ceftolozane/tazobactam susceptibiilty interpretations different from what was reported clinically, supporting concerns surrounding the utility of traditional susceptibility testing methodology in the setting of CF specimens. Genome sequencing of isolates with acquired MHR to ceftolozane/tazobactam revealed variants of unknown significance. Future work will be centred on determining the significance of these mutations to better understand these data in clinical context.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Pharmacy, University of Texas Southwestern Medical Center , Dallas, TX 75390 , USA
2 Department of Microbiology, University of Texas Southwestern Medical Center , Dallas, TX 75390 , USA
3 Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center , Dallas, TX 75390 , USA
4 Department of Pathology, University of Texas Southwestern Medical Center , Dallas, TX 75390 , USA
5 Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center , Dallas, TX 75390 , USA