Abstract
Background
Genetic predispositions may modulate risk for developing neurocognitive late effects in childhood acute lymphoblastic leukemia (ALL) survivors.
Methods
Long-term ALL survivors (n = 212; mean = 14.3 [SD = 4.77] years; 49% female) treated with chemotherapy completed neurocognitive testing and task-based functional neuroimaging. Based on previous work from our team, genetic variants related to the folate pathway, glucocorticoid regulation, drug metabolism, oxidative stress, and attention were included as predictors of neurocognitive performance, using multivariable models adjusted for age, race, and sex. Subsequent analyses evaluated the impact of these variants on task-based functional neuroimaging. Statistical tests were 2-sided.
Results
Survivors exhibited higher rates of impaired attention (20.8%), motor skills (42.2%), visuo-spatial memory (49.3%-58.3%), processing speed (20.1%), and executive function (24.3%-26.1%) relative to population norms (10%; P < .001). Genetic variants implicated in attention deficit phenotypes predicted impaired attention span (synaptosome associated protein 25, F(2,172) = 4.07, P = .019) and motor skills (monoamine oxidase A, F(2,125) = 5.25, P = .007). Visuo-spatial memory and processing speed varied as a function of genetic variants in the folate pathway (methylenetetrahydrofolate reductase [MTHFRrs1801133], F(2,165) = 3.48, P = .033; methylenetetrahydrofolate dehydrogenase 1 [MTHFD1rs2236225], F(2,135) = 3.8, P = .025; respectively). Executive function performance was modulated by genetic variants in the folate pathway (MTHFD1rs2236225, F(2,158) = 3.95, P = .021; MTHFD1rs1950902, F(2,154) = 5.55, P = .005) and glucocorticoid regulation (vitamin D receptor, F(2,158) = 3.29, P = .039; FKBP prolyl isomerase 5, F(2,154) = 5.6, P = .005). Additionally, MTHFD1rs2236225 and FKBP prolyl isomerase 5 were associated with altered brain function during attention and working memory (P < .05; family wise error corrected).
Conclusions
Results extend previous findings of genetic risk of neurocognitive impairment following ALL therapy and highlight the importance of examining genetic modulators in relation to neurocognitive deficits.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Yadav Sapkota 1
; Scoggins, Matthew A 2 ; Jacola, Lisa M 3 ; Koscik, Timothy R 4 ; Hudson, Melissa M 1 ; Ching-Hon Pui 5 ; Krull, Kevin R 1
; van der Plas, Ellen 4 1 Department of Epidemiology and Cancer Control, St. Jude’s Children’s Research Hospital , Memphis, TN, USA
2 Department of Diagnostic Imaging, St. Jude’s Children’s Research Hospital , Memphis, TN, USA
3 Department of Psychology and Biobehavioral Sciences, St. Jude’s Children’s Research Hospital , Memphis, TN, USA
4 Department of Pediatrics, Arkansas Children’s Hospital , Little Rock, AR, USA
5 Department of Oncology, St. Jude’s Children’s Research Hospital , Memphis, TN, USA





