It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Carbapenem-resistant Enterobacterales (CRE) are a substantial problem in Cape Town. CRE epidemiology is largely unknown and mortality remains high.
Objectives
To describe and characterize the clinical and microbiological epidemiology of CRE within Cape Town hospitals to better inform therapy with regard to current and novel antibiotics, as well as improve antimicrobial stewardship (AMS), and infection prevention and control (IPC).
Methods
This prospective, multicentre study performed between 1 November 2020 and 30 November 2022, across three public and three private hospitals included hospitalized participants with CRE from clinical cultures. Participant demographics, clinical information and microbiology results were collected and analysed.
Results
Ninety percent of participants were from public hospitals. The age distribution ranged from 7 days to 88 years. Notable risk factors for CRE infection included recent exposure to antibiotics, medical devices and surgery. The most prevalent species was Klebsiella pneumoniae. However, a higher proportion of Serratia marcescens compared with previous reports was identified. The detected carbapenemases were blaOXA-48-like (80%) and blaNDM (11%). With the exception of amikacin (63%), tigecycline (65%), colistin (95%) and ceftazidime/avibactam (87%), susceptibility to antibiotics was low.
Conclusions
This study identified common risk factors for CRE infection and generated a description of carbapenemase enzymes, species distribution and antibiograms, enabling a better understanding of CRE epidemiology. This provides insights into transmission patterns and resistance determinants of CREs, beneficial to informing data-driven regional patient management, AMS and IPC strategies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Division of Medical Microbiology, National Health Laboratory Service, Red Cross War Memorial Children’s Hospital , Cape Town , South Africa
2 Division of Medical Microbiology, National Health Laboratory Service, Groote Schuur Hospital , Cape Town , South Africa
3 Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa
4 Division of Medical Microbiology, National Health Laboratory Service, Tygerberg Hospital , Cape Town , South Africa
5 Division of Medical Microbiology, Ampath , Cape Town , South Africa