It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The molecular epidemiology of carbapenem-resistant Enterobacterales in Cape Town remains largely unknown.
Objectives
This study aimed to describe the molecular epidemiology, resistome, virulome and mobilome of carbapenem-resistant Klebsiella pneumoniae (CRKP) within Cape Town to guide therapy, antimicrobial stewardship and infection prevention and control practices.
Methods
Eighty-five CRKP isolates from hospitalized patients underwent WGS as part of a prospective, multicentre, cross-sectional study, conducted between 1 November 2020 and 30 November 2022, across public-sector and private-sector hospitals in Cape Town, South Africa.
Results
MLST revealed three novel types, ST6785, ST6786 and ST6787, while the most common were ST219, ST307, ST17, ST13 and ST2497. Different predominant clones were noted in each hospital. The most common carbapenemase gene was blaOXA-48-like, detected in 71% of isolates, with blaNDM detected in 5%. Notably, co-detection of two carbapenemase genes (blaOXA-48-like and blaNDM) occurred in 13% of isolates. The yersiniabactin siderophore was detected in 73% of isolates, and was most commonly associated with the ICEKp5 mobile element. All carbapenemases were located on plasmids. The genes blaOXA-181 and blaOXA-232 colocalized with a ColKP3 replicon type on assembled contigs in 83% and 100% of cases, respectively.
Conclusions
CRKP epidemiology in Cape Town reflects institutionally dominant, rather than regional, clones. The most prevalent carbapenemase gene was blaOXA-48-like, in keeping with CRKP epidemiology in South Africa in general. Emerging clones harbouring both blaOXA-48-like and blaNDM, such as ST17, ST2497 and the novel ST6787, are a concern due to the limited availability of appropriate antimicrobial agents in South Africa.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Division of Medical Microbiology, University of Cape Town , Cape Town, Western Cape , South Africa
2 Division of Computational Biology, University of Cape Town , Cape Town, Western Cape , South Africa
3 Division of Medical Microbiology, Stellenbosch University , Cape Town, Western Cape , South Africa
4 Division of Medical Microbiology, Ampath , Cape Town , South Africa