It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Carbapenem resistance in Gram-negative bacteria is an ongoing public health problem of global dimensions leaving very few treatment options for infected patients.
Objectives
To study the dissemination of plasmid-borne carbapenemase genes in Gram-negative bacteria from a diagnostic centre in Tamil Nadu, India.
Methods
A total of 151 non-repetitive isolates belonging to 10 genera were collected between January 2015 and December 2016 from a diagnostic centre in Tamil Nadu. The isolates included Escherichia coli (n = 57), Klebsiella pneumoniae (n = 45), Pseudomonas aeruginosa (n = 10), Salmonella Typhi (n = 8), Enterobacter cloacae (n = 8), Acinetobacter baumannii (n = 7), Serratia marcescens (n = 5), Achromobacter xylosoxidans (n = 5), Proteus mirabilis (n = 5), Klebsiella oxytoca (n = 5) and Elizabethkingia meningoseptica (n = 1).
Results
Of the 151 isolates, 71% (n = 107) and 68% (n = 103) were found to be resistant to meropenem and imipenem, respectively. The most prevalent β-lactamase gene was blaNDM-1 (n = 22), followed by blaOXA-181 (n = 21), blaGES-1 (n = 11), blaOXA-51 (n = 9), blaGES-9 (n = 8), blaOXA-23 (n = 7) and blaIMP-1 (n = 3). We also observed blaOXA-23 in E. coli (n = 4), and three K. pneumoniae were positive for both, blaOXA-23 and blaOXA-51. Plasmid incompatibility (inc/rep) typing results showed that the resistance genes (n = 11) were present in the isolates carrying plasmid-types IncX, IncA/C, IncFIA-FIB and IncFIIA. The plasmid-borne resistance genes in E. coli and K. pneumoniae were transferred to susceptible E. coli AB1157.
Conclusions
This study highlights the prevalence of carbapenem resistance and the acquisition of plasmid-borne carbapenemase genes in Gram-negative bacteria isolated at this centre.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Antibiotic Resistance and Phage Therapy Laboratory, Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
2 Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang 314400, China and Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
3 School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, University of Aberdeen, Aberdeen AB25 2ZD, UK