It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Exposure to ionizing radiation (IR) induces various types of DNA damage, of which DNA double-strand breaks are the most severe, leading to genomic instability, tumorigenesis, and cell death. Hence, cells have developed DNA damage responses and repair mechanisms. IR also causes the accumulation of endogenous reactive oxidative species (ROS) in the irradiated cells. Upon exposure to low-dose irradiation, the IR-induced biological effects mediated by ROS were relatively more significant than those mediated by DNA damage. Accumulating evidence suggests that such increase in endogenous ROS is related with mitochondria change in irradiated cells. Thus, in this review we focused on the mechanism of mitochondrial ROS production and its relationship to the biological effects of IR. Exposure of mammalian cells to IR stimulates an increase in the production of endogenous ROS by mitochondria, which potentially leads to mitochondrial dysfunction. Since the remains of damaged mitochondria could generate or leak more ROS inside the cell, the damaged mitochondria are removed by mitophagy. The disruption of this pathway, involved in maintaining mitochondrial integrity, could lead to several disorders (such as neurodegeneration) and aging. Thus, further investigation needs to be performed in order to understand the relationship between the biological effects of low-dose IR and mitochondrial integrity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan