It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Imaging plays an important role in the diagnosis and staging of cancer, as well as in radiation treatment planning and evaluation of therapeutic response. Recently, there has been significant interest in extracting quantitative information from clinical standard-of-care images, i.e. radiomics, in order to provide a more comprehensive characterization of image phenotypes of the tumor. A number of studies have demonstrated that a deeper radiomic analysis can reveal novel image features that could provide useful diagnostic, prognostic or predictive information, improving upon currently used imaging metrics such as tumor size and volume. Furthermore, these imaging-derived phenotypes can be linked with genomic data, i.e. radiogenomics, in order to understand their biological underpinnings or further improve the prediction accuracy of clinical outcomes. In this article, we will provide an overview of radiomics and radiogenomics, including their rationale, technical and clinical aspects. We will also present some examples of the current results and some emerging paradigms in radiomics and radiogenomics for clinical oncology, with a focus on potential applications in radiotherapy. Finally, we will highlight the challenges in the field and suggest possible future directions in radiomics to maximize its potential impact on precision radiotherapy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5847, USA
2 Global Station for Quantum Biomedical Science and Engineering, Global Institute for Cooperative Research and Education, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
3 Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5847, USA; Global Station for Quantum Biomedical Science and Engineering, Global Institute for Cooperative Research and Education, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan