Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The adoption rate of battery electric vehicles (EVs) is rapidly increasing. Electric vehicles differ significantly from conventional internal combustion engine vehicles and vary widely across different manufacturers. Emergency responders (ERs) and recovery personnel may have less experience with EVs and lack timely access to critical information such as the extent of the stranded energy present, high-voltage safety hazards, and post-crash handling procedures in a user-friendly manner. This paper presents a software/hardware interactive tool named Electric Vehicle Information for Incident Response Solutions (EVIRS) to aid in the quick access to emergency response and recovery information. The current prototype of EVIRS identifies EVs using the VIN or Make, Model, and Year, and offers several useful features for ERs and recovery personnel. These features include integration and easy access to emergency response procedures tailored to an identified EV, vehicle structural schematics, the quick identification of battery pack specifications, and more. For EVs that are not severely damaged, EVIRS can perform calculations to estimate stranded energy in the EV’s battery and discharge time for various power loads using either EV dashboard information or operational data accessed through the CAN interface. Knowledge of this information may be helpful in the post-crash handling, management, and storage of an EV. The functionality and accuracy of EVIRS were demonstrated through laboratory tests using a 2021 Ford Mach-E and associated data acquisition system. The results indicated that when the remaining driving range was used as an input, EVIRS was able to estimate the pack voltage with an error of less than 3 V. Conversely, when pack voltage was used as an input, the estimated state of charge (SOC) error was less than 5% within the range of 30–90% SOC. Additionally, other features, such as retrieving emergency response guides for identified EVs and accessing lessons learned from archived incidents, have been successfully demonstrated through EVIRS for quick access. EVIRS can be a valuable tool for emergency responders and recovery personnel, both in action and during offline training, by providing crucial information related to assessing EV/battery safety risks, appropriate handling, de-energizing, transport, and storage in an integrated and user-friendly manner.

Details

Title
A Software/Hardware Framework for Efficient and Safe Emergency Response in Post-Crash Scenarios of Battery Electric Vehicles
Author
Zhang, Bo  VIAFID ORCID Logo  ; Tanim, Tanvir R  VIAFID ORCID Logo  ; Black, David
First page
80
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23130105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170869664
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.