Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Earth materials are recognized for their excellent thermal and hygrothermal properties but exhibit low mechanical resistance. Binder stabilization improves compressive strength but often increases the carbon footprint. This study evaluates the mechanical, thermal, hygrothermal, and environmental properties of 12 stabilized earth concrete formulations. The samples were prepared using four types of excavated earths (A, B, C, and D) with varying granular distributions and chemical compositions, stabilized with three industrial binders: two low-carbon activated GGBS-based binders (LN and LW) and a CEM II cement. The samples were cured at 20 °C and 100% relative humidity. Density, porosity, thermal conductivity, specific heat capacity, and Moisture Buffer Value (MBV) were measured at 28 days of curing, using standard methods from concrete and geotechnical fields, while compressive strength tests were performed at 7, 28, and 90 days. The results revealed that gravel-rich earths (A and B) demonstrated higher densities and compressive strengths compared to fine-rich earths (C and D). GGBS-stabilized earths exhibited superior mechanical performance (1.7–14.8 MPa) compared to cement-stabilized earths (0.8–3.8 MPa). Despite low binder content (7%), thermal and hygrothermal properties were largely influenced by the earth’s composition. Thermal conductivity (0.48–0.59 W·m−1·K−1), volumetric heat capacity (1661–2031 J·m−3·K−1), and MBV (0.9–1.9 g·m−2·%RH−1) were consistent with raw earth values, supporting thermal inertia and humidity regulation. The carbon footprint analysis showed that both LN and LW binders had the lowest emissions (29–34 kg CO2·eq/m3), with LN binders demonstrating consistent normalized performance (5.2–6.2 kg CO2·eq/m3·/MPa) and LW binders exhibiting superior mechanical performance and a lower normalized indicator (2.3–5.4 kg CO2·eq/m3/MPa). Conversely, CEM II-stabilized formulations displayed the highest emissions (70–86 kg CO2·eq/m3) and the least favorable compressive strength-to-carbon ratios. These findings emphasize the potential of stabilized earth concretes, particularly those with low-carbon GGBS binders, for sustainable and energy-efficient construction practices.

Details

Title
Thermal, Hygrothermal, Mechanical and Environmental Study of Stabilized Earth with GGBS-Based Binders
Author
Lam, Arthur 1   VIAFID ORCID Logo  ; Hamzaoui, Rabah 2   VIAFID ORCID Logo  ; Kindinis, Andrea 3   VIAFID ORCID Logo  ; Idir, Rachida 4   VIAFID ORCID Logo  ; Lamberet, Séverine 5 ; Patrix, Stéphane 5 

 ESTP-IRC Laboratory, 28 Avenue du Président Wilson, 94230 Cachan, France 
 Microbusiness Low Carbon Construction Materials, 29 Avenue Leon Blum, 94230 Cachan, France 
 Resallience, Sixense Engineering, 22 Rue Lavoisier, 92000 Nanterre, France 
 Cerema, University of Gustave Eiffel, UMR MCD, F-77171 Sourdun, France 
 Saint-Gobain Distribution Bâtiment France, 12 Place de l’Iris, 92400 Courbevoie, France 
First page
594
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170904211
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.