It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Radiotherapy is used for curative and palliative treatment. However, its negative effect on normal tissue is a limiting factor for the deliverable dose. Microcirculatory breakdown and prolonged inflammation in particular are major features of late side effects. The purpose of this study was to develop a reliable animal model that will allow a long-term in vivo analysis of microcirculation and inflammation following irradiation. A single dose of 90 Gy was delivered to the ears of hairless mice (n = 15). Intravital fluorescent microscopy was used to assess microcirculatory parameters and leukocyte behaviour. Values for the identical (control) areas were obtained before as well as during the following days, weeks and months following irradiation. The arteriolar and venular diameter increased up to Day 14, decreased during the following months, and increased again after one year. The red blood cell velocity increased up to 145% on Day 3, decreased on Day 7 to 115%, and stayed above baseline value the whole year. The integrity loss of the endothelium increased up to Day 7 and continued up to Day 75 after radiation. After one year, the oedema was at the baseline level. Leukocytes showed their maximal activity at one year after trauma. An increase was measured up to Day 25; the lowest values were measured at Day 40 post-irradiation, followed by a repeated increase. The present model allows a certain visualization of microcirculatory disturbances and inflammation over a period of months. This permits the possibility of long-term investigations of the underlying pathophysiology following irradiation, including possible drug interactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
2 Department of Radiotherapy, University Hospital Essen, University Duisburg-Essen, Germany