It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As a consequence of fetal radiosensitivity, the estimation of internal dose received by a fetus from radiopharmaceuticals applied to the mother is often important in nuclear medicine. A new 9-months pregnant phantom based on magnetic resonance (MR) images tied to the International Commission on Radiological Protection (ICRP) reference voxel phantom has been developed. Maternal and fetal organs were segmented from a set of pelvic MR images of a 9-months pregnant subject using 3D-DOCTORTM and then imported into the 3D modeling software package RhinocerosTM for combining with the adult female ICRP voxel phantom and further modeling. Next, the phantom organs were rescaled to match with reference masses described in ICRP Publications. The internal anatomy of previous pregnant phantom models had been limited to the fetal brain and skeleton only, but the fetus model developed in this study incorporates 20 different organs. The current reference phantom has been developed for application in comprehensive dosimetric study in nuclear medicine. The internal dosimetry calculations were performed for thyroid agents using the Monte Carlo transport method. Biokinetic data for these radiopharmaceuticals were used to estimate cumulated activity during pregnancy and maternal and fetal organ doses at seven different maximum thyroid uptake levels. Calculating the dose distribution was also presented in a sagittal view of the pregnant model utilizing the mesh tally function. The comparisons showed, in general, an overestimation of the absorbed dose to the fetus and an underestimation of the fetal thyroid dose in previous studies compared with the values based on the current hybrid phantom.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Physics Department, School of Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1436, Iran