It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Cryptosporidium is a leading cause of diarrhea in Sub-Saharan Africa and is associated with substantial morbidity and mortality in young children.
Methods
We analyzed data from children aged 6–71 months presenting to 2 public hospitals in Western Kenya with acute diarrhea and their primary caregivers, including detection of Cryptosporidium by quantitative polymerase chain reaction (PCR) and immunoassay analysis in stool samples from both children and their caregivers. Associations between potential transmission sources and child/caregiver Cryptosporidium infection were evaluated using prevalence ratios (PRs). Secondary analyses evaluated host and clinical risk factors of child/caregiver Cryptosporidium infection.
Results
Among 243 child–caregiver pairs enrolled, 77 children (32%) and 57 caregivers (23%) had Cryptosporidium identified by either immunoassay or PCR. Twenty-six of the 243 child–caregiver pairs (11%) had concordant detection of Cryptosporidium. Cryptosporidium infection in children was associated with detection of Cryptosporidium in caregivers (adjusted PR [aPR], 1.8; 95% CI, 1.2 to 2.6; P = .002) and unprotected water source (aPR, 2.0; 95% CI, 1.3 to 3.2; P = .003). Risk factors for Cryptosporidium detection in caregivers included child Cryptosporidium infection (aPR, 2.0; 95% CI, 1.3 to 3.0; P = .002) as well as cow (aPR, 3.1; 95% CI, 1.4 to 7.0; P = .02) and other livestock ownership (aPR, 2.6; 95% CI, 1.1 to 6.3; P = .03) vs no livestock ownership. Recent diarrhea in caregivers and children was independently associated with child and caregiver Cryptosporidium infections, respectively.
Conclusions
Our results are consistent with the hypothesis that Cryptosporidium transmission can occur directly between child–caregiver dyads as well as through other pathways involving water and livestock. Additional research into caregivers as a source of childhood Cryptosporidium infection is warranted.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Maryland, Baltimore, Maryland, USA
2 Hawai’i Pacific Health, Lihue HI
3 University of Virginia, Charlottesville, Virginia, USA
4 Maasai Mara University, Narok, Kenya
5 University of Washington, Seattle, Washington, USA
6 Kenya Medical Research Institute, Nairobi, Kenya
7 University of Washington, Seattle, Washington, USA; Child Acute Illness and Nutrition (CHAIN) Network, Nairobi, Kenya