Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study is dedicated to an in−depth analysis of the combustion characteristics of extruded polystyrene (XPS) as a building insulation material with the aim of accurately assessing its fire risk in the built environment. Innovatively, this research employed a cone calorimeter equipped with a self−designed insulating sample holder to conduct a systematic experimental study. Additionally, it performed a comprehensive analysis of the ignition characteristics, heat release rate, fire hazard, smoke release, and toxic gas emission of XPS materials. The experimental results revealed that the combustion behavior of XPS is influenced by multiple factors, including the content of flame retardants and external heat flux, which significantly affect the fire hazard of XPS. When the thermal radiation intensity escalates from 25 kW/m2 to 55 kW/m2, the peak heat release rate of XPS−B1 rises from 428 kW/m2 to 535 kW/m2, marking an increase of 25.00%. Conversely, the peak heat release rate of XPS−B2 surges from 348 kW/m2 to 579 kW/m2, reflecting a substantial increase of 66.38%. This research not only provides a solid theoretical foundation and detailed experimental data for the fire behavior of XPS materials but also holds significant practical importance for enhancing the fire safety of buildings. Overall, this research contributes to the scientific understanding of XPS insulation materials and supports the development of more effective fire prevention measures in construction.

Details

Title
Improving Combustion Analysis of Extruded Polystyrene via Custom Isolation Methodology
Author
Hou, Yanan 1 ; Wan, Mei 2 ; Li, Jian 2 ; Ren, Fei 2   VIAFID ORCID Logo  ; Qian, Xiaodong 2 ; Shi, Congling 2 

 College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710018, China; [email protected] 
 Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China; [email protected] (J.L.); [email protected] (F.R.); [email protected] (C.S.) 
First page
43
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
25716255
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170969319
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.