Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Forest fires are the result of poor land management and climate change. Depending on the type of the affected eco-system, they can cause significant biodiversity losses. This study was conducted in the Amazonas department in Peru. Binary data obtained from the MODIS satellite on the occurrence of fires between 2010 and 2022 were used to build the risk models. To avoid multicollinearity, 12 variables that trigger fires were selected (Pearson ≤ 0.90) and grouped into four factors: (i) topographic, (ii) social, (iii) climatic, and (iv) biological. The program Rstudio and three types of machine learning were applied: MaxENT, Support Vector Machine (SVM), and Random Forest (RF). The results show that the RF model has the highest accuracy (AUC = 0.91), followed by MaxENT (AUC = 0.87) and SVM (AUC = 0.84). In the fire risk map elaborated with the RF model, 38.8% of the Amazonas region possesses a very low risk of fire occurrence, and 21.8% represents very high-risk level zones. This research will allow decision-makers to improve forest management in the Amazon region and to prioritize prospective management strategies such as the installation of water reservoirs in areas with a very high-risk level zone. In addition, it can support awareness-raising actions among inhabitants in the areas at greatest risk so that they will be prepared to mitigate and control risk and generate solutions in the event of forest fires occurring under different scenarios.

Details

Title
Modeling of Forest Fire Risk Areas of Amazonas Department, Peru: Comparative Evaluation of Three Machine Learning Methods
Author
Vergara, Alex J 1   VIAFID ORCID Logo  ; Valqui-Reina, Sivmny V 1 ; Dennis Cieza-Tarrillo 2   VIAFID ORCID Logo  ; Gómez-Santillán, Ysabela 1 ; Chapa-Gonza, Sandy 1 ; Ocaña-Zúñiga, Candy Lisbeth 3   VIAFID ORCID Logo  ; Auquiñivin-Silva, Erick A 1   VIAFID ORCID Logo  ; Cayo-Colca, Ilse S 4   VIAFID ORCID Logo  ; Alexandre Rosa dos Santos 5 

 Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342—Ciudad Universitaria, Chachapoyas 01000, Peru; [email protected] (S.V.V.-R.); [email protected] (Y.G.-S.); [email protected] (S.C.-G.); [email protected] (E.A.A.-S.) 
 Departamento de Ciencias Forestales, Escuela de Ingeniería Forestal y Ambiental, Universidad Nacional Autónoma de Chota, Jr. José Osores Nro. 418, Chota 06121, Peru; [email protected] 
 Instituto de Investigación en Ciencia de Datos, Universidad Nacional de Jaén (UNJ), Jaén 06801, Peru; [email protected] 
 Facultad de Ingeniería Zootecnista Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342—Ciudad Universitaria, Chachapoyas 01001, Peru; [email protected] 
 Centro de Ciências Agrárias e Engenharias, Federal University of Espírito Santo (UFES), Rua Alto Universitário, Alegre 29500-000, ES, Brazil; [email protected] 
First page
273
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170978657
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.