It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Staphylococcus aureus is the most common pathogen causing skin and soft-tissue infection and poses a particular problem to patients with atopic dermatitis who have increased colonization and infection rates. S. aureus is a versatile pathogen that adapts to the relatively hypoxic environment of the skin, although the underlying mechanisms of adaptation remain unclear. We hypothesized that adaptation to the skin is largely driven by metabolic interactions between S. aureus and keratinocytes.
Methods
We characterized 10 clinical S. aureus isolates obtained from individual patients with atopic dermatitis using whole genome sequencing and qRT-PCR to evaluate their genotypic and phenotypic properties. The metabolic and inflammatory responses of keratinocytes to S. aureus infection were assessed in vitro in primary human keratinocytes and in vivo in a murine cutaneous abscess model.
Results
Host-adapted S. aureus isolates from atopic dermatitis patients are phylogenetically diverse and are associated with varying severity of disease. They stimulate glycolysis and stabilize HIF1α in keratinocytes, and produce a similar infectious phenotype to WT USA300 LAC in a murine cutaneous abscess model. Numerous metabolic nonsynonymous mutations in genes encoding glycolytic and TCA cycle enzymes were identified in these strains. Increased expression of fumC, that encodes fumarase which hydrates fumarate to malate in the TCA cycle, was observed in the clinical isolates compared with WT LAC. Based on this finding and recent literature demonstrating that fumarate accumulation in immune cells is vital for trained immunity and that it inhibits glycolysis via GAPDH inactivation, we hypothesized that host-adapted S. aureus strains upregulate fumarase in response to increased fumarate levels in the skin. Keratinocytes infected with our clinical strains secrete increased fumarate compared with uninfected keratinocytes.
Conclusion
S. aureus strains from atopic dermatitis skin represent a diverse population that are unified in their ability to adapt via metabolic interactions with keratinocytes. They adapt to increased fumarate levels in the skin by upregulating fumarase which likely represents a feedback inhibitory response to increased glycolysis in keratinocytes.
Disclosures
All authors: No reported disclosures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Columbia University, New York, New York
2 University of California San Francisco, San Francisco, California
3 Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
4 Pediatrics, Columbia University, New York, New York