It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Delafloxacin (DLX) is a broad-spectrum fluoroquinolone (FQ) antibacterial; approved in 2017 by the Food and Drug Administration for treatment of acute bacterial skin and skin structure infections (ABSSSIs). DLX is in clinical development for community-acquired bacterial pneumonia (CABP). In this study, in vitro susceptibility (S) for DLX and comparator agents for Gram-negative (GN) and Gram-positive (GP) anaerobic isolates from Phase 3 ABSSSI clinical trials were determined and compared with the microbiologic response for evaluable isolates.
Methods
A total of 84 anaerobic isolates were collected during Phase 3 ABSSSI clinical trials and 9 additional Bacteroides fragilis (BF) were collected as part of the 2017 SENTRY surveillance program. The isolates tested included 11 BF, 13 Clostridium perfringens (CP), and other species with <10 isolates (table). Isolate identifications were confirmed by molecular methods. Susceptibility testing was performed according to CLSI agar dilution methodology (M11, 2012). Other antimicrobials tested included clindamycin (CD), metronidazole (MTZ), and moxifloxacin (MXF). In addition, the activity of DLX and MXF were compared at standard pH 7.0 and at pH 6.0.
Results
DLX had the lowest MIC50/90 values against both GP and GN species and was 32-fold more active than MXF for all organisms. For BF, DLX was 4- to 16-fold more active than the other comparators. For CP, DLX was 32- to 64-fold more active than the 3 comparators. When comparing the activity of DLX and MXF at pH 6 vs. pH 7, DLX had the same MIC50/90 values while MXF MIC50/90 values were 2-fold less active at the lower pH (Table 1). Of the 84 clinical trial isolates, 21 were recovered from subjects in the microbiologically evaluable at follow-up (MEFU) population. All of the subjects had a favorable microbiological response (presumed eradication) at FU.
Conclusion
DLX demonstrated potent in vitro antibacterial activity against anaerobic isolates tested, including BF and CP and was more active than MXF. For all isolates combined, DLX activity was unchanged at lower pH while MXF MIC values increased 2-fold. These data suggest that DLX activity remains potent at a lower pH common at sites of infection.
Disclosures
D. Shortridge, Melinta Therapeutics: Research Contractor, Research support. S. P. McCurdy, Melinta Therapeutics: Employee, Salary. P. R. Rhomberg, Melinta Therapeutics: Research Contractor, Research support. M. D. Huband, Melinta Therapeutics: Research Contractor, Research support. R. K. Flamm, Melinta Therapeutics: Research Contractor, Research support.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 JMI Laboratories, Inc., North Liberty, Iowa
2 Melinta Therapeutics, Lincolnshire, Illinois