It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In Germany, previous reports have demonstrated transmitted HIV-1 drug resistance mutations (DRM) in 10% of newly diagnosed individuals, affecting treatment failure and the choice of antiretroviral therapy (ART). Here, we sought to understand the molecular epidemiology of HIV DRM transmission throughout the Cologne-Bonn region, an area with one of the highest rate of new HIV infections in Europe (13.7 per 100,000 habitants).
Methods
We analyzed 714 HIV-1 ART naïve infected individuals diagnosed at the University Hospitals Cologne and Bonn between 2001 and 2016. Screening for DRM was performed according to the Stanford University Genotypic Resistance Interpretation. Shared DRM were defined as any DRM present in genetically linked individuals (<1.5% genetic distance). Phylogenetic and network analyses were performed to infer putative relationships and shared DRMs.
Results
We detected 123 DRMs in our study population (17.2% of all sequences). Prevalence of any DRM was comparable among risk groups and was highest among people from an endemic area (i.e., country with HIV prevalence >1%) (11/51, 21.6%). Nucleoside-and non-nucleoside reverse transcriptase inhibitor (NRTI/NNNRTI) resistance mutations were detected in 49 (7%) and 97 (13.6%) individuals, with the E138A in 29 (4.1%) and K103N in 11 (1.5%) being the most frequent. Frequency of DRM was comparable in clustering and not clustering individuals (17.1% vs. 17.5%). Transmission network analysis indicated that the frequency of DRM in clustering individuals was the highest in PWID (3/7, 42.9%) (Figure 1A). Genetically linked individuals harboring shared DRMs were more likely to live in suburban areas than in Central Cologne (18.8% vs. 8% of clustering sequences with DRM; Figure 1B).
Conclusion
The rate of DRMs was exceptionally high in the Cologne/Bonn area. Network analysis elucidated frequent cases of shared DRMs among genetically linked individuals, revealing the potential spread of DRMs and the need to prevent onward transmission of DRM in the Cologne-Bonn area.
Disclosures
M. Hoenigl, Gilead, Basilea, Merck: Speaker’s Bureau, Research grant and Speaker honorarium.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 German Center for Infection Research, Cologne-Bonn, Cologne, Germany; University Hospital of Cologne, Cologne, Germany
2 University of California San Diego, San Diego, California
3 University Hopital of Bonn, Bonn, Germany
4 University Hospital of Cologne, Cologne, Germany