It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
University Medical Center in Lubbock, TX is one of few medical centers using Becton Dickinson (BD) Kiestra Total Laboratory Automation (TLA) system since May 2015. The impact on organism-specific turn around time (TAT) in urinary specimens after implementation of TLA was evaluated.
Methods
After approval from the Quality Improvement Review Board, a retrospective analysis of microbiological data from urinary specimens in BD research database was performed. Before vs. after implementation (2013 vs. 2016) TAT was compared. Ten clinically relevant organisms were analyzed. Statistical analysis was performed with SAS software version 9.2. Data were analyzed using Chi-squared test. A P-value of < 0.05 was considered statistically significant.
Results
Overall, 2282 specimens from 2013 and 2306 specimens from 2016 were analyzed. Compared with before vs. after implementation of TLA, an overall improvement in TAT was observed (expressed as mean hours for each organism): Enterococcus faecalis (55.2 vs. 38.8), Enterococcus faecium (68.4 vs. 43.8), Escherichia coli (44.2 vs. 41.0), Klebsiella pneumoniae (45.0 vs. 44.0), Proteus mirabilis (44.8 vs. 38.6), Pseudomonas aeruginosa (58.9 vs. 37.7), Staphylococcus aureus (49.2 vs. 36.0), Streptococcus agalactiae (49.2 vs. 31.4), Streptococcus pneumoniae (51.7 vs. 61.8), Streptococcus pyogenes (62.6 vs. 26.6). It was also observed that improvement in TAT was more pronounced for Gram-positive organisms than Gram-negative organisms. P-value was < 0.01 for all organisms except Streptococcus pneumoniae (0.7985) and Streptococcus pyogenes (0.2562). The number of specimens with these two organisms was too small to be considered significant.
Conclusion
Automation of microbiology laboratory leads to significant TAT improvement in urinary specimens, making early data availability to clinicians. This improves efficiency as well as supporting earlier antibiotic switch, antimicrobial stewardship and optimal patient care in treating urinary tract infections.
Disclosures
All authors: No reported disclosures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Texas Tech University Health Sciences Center, Lubbock, Texas
2 UMC Health System, Lubbock, Texas
3 BD, Vestavia, Alabama