It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Few studies have compared the yield of reverse transcription polymerase chain reaction (RT-PCR) assays in nasopharyngeal swabs, oropharyngeal swabs, and sputum for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection.
Methods
We conducted an observational study in Beijing Ditan Hospital, China. Specimens including nasopharyngeal swabs, oropharyngeal swabs, and sputum from confirmed coronavirus 2019 patients were collected for RT-PCR testing. Disease duration was calculated from the date of symptom onset to the date of specimen collection and divided into 3 groups: ≤14 days, 14–21 days, and >21 days. We compared positive rates across the 3 specimens collected. The kappa coefficient was used to evaluate the consistency of RT-PCR results between different specimens.
Results
A total of 291 specimens were collected and tested from 43 confirmed patients. Among specimens collected with a disease duration of ≤14 days, the positive rate was highest in sputum (79.2%); this rate was significantly higher than that in nasopharyngeal swabs (37.5%; P = .003) and oropharyngeal swabs (20.8%; P < .001). Similar findings were observed with the disease durations of 14–21 days and >21 days. The consistency of testing results between nasopharyngeal swabs and oropharyngeal swabs was low with the disease durations of ≤14 days and >21 days. The consistency between the sputum and oropharyngeal swabs and between the sputum and nasopharyngeal swabs was very low across all 3 disease durations, with statistical significance.
Conclusions
Compared with nasopharyngeal swabs and oropharyngeal swabs, sputum had the highest yield of SARS-CoV-2 detection. Nasopharyngeal swabs and oropharyngeal swabs had a similar yield. If sputum is not feasible, a nasopharyngeal swab can be recommended for the detection of SARS-CoV-2, and early testing is needed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Nursing Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
2 The Medical Statistic Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
3 The Nursing Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
4 Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
5 Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
6 Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China