Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, W-Cu composite systems have become very interesting subjects due to good electrical and thermal conductivity, high-temperature strength, certain plasticity, and excellent radiation resistance. W-Cu composites are a very important class of materials in applications like PFM (plasma facing materials), functional graded materials (FGM), electronic packaging materials, high-voltage electrical contacts, sweating materials, shaped charge liners, electromagnetic gun-rail materials, kinetic energy penetrators, and radiation shielding/protection. There is no possibility of forming a crystalline structure between these two materials. However, due to the unique properties these materials possess, they can be used by preparing them as a composite. Generally, W-Cu composites are prepared via the conventional powder metallurgy routes, i.e., sintering, hot pressing, hot isostatic pressing, isostatic cold pressing, sintering and infiltration, and microwave sintering. However, these processes have certain limitations, like the inability to produce bulk material, they are expensive, and their adoptability is limited. Here, in this review, we will discuss in detail the fabrication routes of additive manufacturing, and its current progress, challenges, trends, and associated properties obtained. We will also explain the challenges for the additive manufacturing of the composite. We will also compare W-Cu composites to other materials that can challenge them in terms of specific applications or service conditions. The solidification mechanism will be explained for W-Cu composites in additive manufacturing. Finally, we will conclude the progress of additive manufacturing of W-Cu composites to date and suggest future recommendations based on the current challenges in additive manufacturing.

Details

Title
A Review on the Additive Manufacturing of W-Cu Composites
Author
Hussain, Muhammad 1   VIAFID ORCID Logo  ; Dong, Bosheng 2   VIAFID ORCID Logo  ; Qiu, Zhijun 3 ; Garbe, Ulf 3 ; Pan, Zengxi 1 ; Li, Huijun 1 

 School of Mechanical, Materials, Mechatronic and Biomedical Engineering University of Wollongong, Wollongong 2500, Australia; [email protected] 
 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney 2006, Australia; [email protected] 
 Australia’s Nuclear Science and Technology Organization (ANSTO), Sydney 2234, Australia; [email protected] (Z.Q.); [email protected] (U.G.) 
First page
197
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171104328
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.