Abstract

Background

Classification and early detection of severe coronavirus disease 2019 (COVID-19) patients is required to establish an effective treatment. We tested the utility of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to classify and predict the severity of COVID-19.

Methods

We used MALDI-TOF MS to analyze the serum peptidome from 72 patients with COVID-19 (training cohort), clinically classified as mild (28), severe (23), and critical (21), and 20 healthy controls. The resulting matrix of peak intensities was used for Machine Learning (ML) approaches to classify and predict COVID-19 severity of 22 independent patients (validation cohort). Finally, we analyzed all sera by liquid chromatography mass spectrometry (LC-MS/MS) to identify the most relevant proteins associated with disease severity.

Results

We found a clear variability of the serum peptidome profile depending on COVID-19 severity. Forty-two peaks exhibited a log fold change ≥1 and 17 were significantly different and at least 4-fold more intense in the set of critical patients than in the mild ones. The ML approach classified clinical stable patients according to their severity with 100% accuracy and correctly predicted the evolution of the nonstable patients in all cases. The LC-MS/MS identified 5 proteins that were significantly upregulated in the critical patients. They included the serum amyloid protein A2, which probably yielded the most intense peak detected by MALDI-TOF MS.

Conclusions

We demonstrate the potential of the MALDI-TOF MS as a bench to bedside technology to aid clinicians in their decision making regarding patients with COVID-19.

Details

Title
Use of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Analysis of Serum Peptidome to Classify and Predict Coronavirus Disease 2019 Severity
Author
Gomila, Rosa M 1 ; Martorell, Gabriel 1 ; Fraile-Ribot, Pablo A 2 ; Doménech-Sánchez, Antonio 3 ; Albertí, Miguel 4 ; Oliver, Antonio 2 ; García-Gasalla, Mercedes 5 ; Albertí, Sebastián 6 

 Servicios Científico-Técnicos, Universidad de las Islas Baleares, Palma de Mallorca, Spain 
 Servicio de Microbiología, Hospital Universitario Son Espases, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IDISBA), Palma de Mallorca, Spain 
 Instituto de Investigación Sanitaria de las Islas Baleares (IDISBA), Palma de Mallorca, Spain; IUNICS, Universidad de las Islas Baleares, Palma de Mallorca, Spain 
 Escuela Politécnica Superior, Universidad de las Islas Baleares, Palma de Mallorca, Spain 
 Instituto de Investigación Sanitaria de las Islas Baleares (IDISBA), Palma de Mallorca, Spain; Servicio de Medicina Interna. Hospital Universitario Son Espases, Palma de Mallorca, Spain 
 Servicios Científico-Técnicos, Universidad de las Islas Baleares, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IDISBA), Palma de Mallorca, Spain; IUNICS, Universidad de las Islas Baleares, Palma de Mallorca, Spain 
Publication year
2021
Publication date
Jun 2021
Publisher
Oxford University Press
e-ISSN
23288957
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171167777
Copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.